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I. INTRODUCTION

This report describes the work performed during the first six-month
period under Grant Number NGR~37-002-037 of the National Aeronautics
and Space Administration. The general objective of this project is
to develop finite-difference methods for the computation of sonic
boom wave reflections and diffractions.

The numerical metﬁod proposed was an explicit Eulerian solution
of the basic fluid flow conservation equations, applied to a field of
discrete compufation points. Since such equations are non-linear
partial differential equations of the hyperbolic type, they are numeri-
cally unstable when computed in an explicit, march-forward-in-time
method. Stability is provided by the addition of dissipative diffusion
terms which are everywhere small except in regions of large spatial
second derivatives. Thus, the shock wave discontinuity, which is the
principal destabilizing disturbance, is smoothed into a thin region

having high gradients.



NOMENCLATURE

Acoustic velocity

Energy per unit volume

Pressure

Time

Velocity component in the x-direction
Velocity component in the y-direction
Velocity magnitude

Velocity component in the z-direction
Cartesian coordinates

Ratio of specific heats

Density

Pressure ratio across a shock wave



II. ATTEMPTS TO SOLVE THE WEAK-WAVE EQUATION

For weak pressure waves, including sonic booms at far field

conditions, the simple pressure wave equations applies:
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where p is the pressure perturbation.

This was a£tractive for numerical solutions because it involved
only one dependent variable. However, two difficulties were apparent
at the start: (1) second-order derivatives were involved, making ex-
plicit determination difficult; (2) the boundary representation was
troublesome at solid walls. An incoming wave had to be so represented
that a proper reflected wave would result. No method could be devised
to reflect waveé in a physically correct manner.

It was therefore necessary to turn to the complete set of equations

for fluid motion, rather than merely solving the acoustic equation.

III. THE CONSERVATION EQUATIONS FOR WEAK-WAVE SYSTEMS

A

The equations for conservation of mass, of momentum in the three

space dimensions, and of energy are, respectively:
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Here, e is the energy per unit volume and
e = '% p(u® +v® + w3) + ;7%‘{ : (6)

describes the sum of the kinetic ?nd internal energies. When (2), (3)

and (4) are expanded and combined with (1), they become
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Equations (1), (6), (7), (8), and (9) can be so combined with (5)

that it reduces to

%E+u§£‘+v§§'+w%§+yp(‘%xq+%§+%) = 0 (10)

For the sake of brevity, let differentiation be denoted by the

subscript. The equations are then written as follows:
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A. Reduced Form for a Moving Weak Wave
To simplify the equations for weak wave conditions, an order-of-
magnitude estimate was made. Typical sonic boom values are listed
below. 3r
1100 ft/sec. Z

' N
P, = 2000 1b/ft?

a

REGION 2
p, = -0023 slugs/ft3 V, =0
P, = 2002 1b./ft® REGION 1
AP = 2 1b/ft2 L s
€ = pg/p, = 1.001;and for(§-1) << 1,
_ 2(E - 1 _ s
Vo, = a, JZY E AT 0.393 ft/sec
(vt DE+ (v - 1) 7 _ 2802k,
Pa 1[ (y-DEg+(y+1) Pl Y2.8004° = ™
If 0 = 45°

ug = vy = 0.281 ft/sec.

If a,dt = dx = dy = dz = 1, then each term of (7), (8) and (9) is seen to

be of order 1000 or 1, and each term of (10) to be of order 10_3 or 10-6.
Retaining only the larger terms reduces these form equations to
+l = 0 (11)
ut ppx -
v. ++p < 0 (12)
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P, + yp(ux + vy + wz) = 0. (14)

B. Form for a Stationary, Weak Shock
It is often convenient to shift the coordinate system to the wave.
When this is done, the order-of-magnitude analysis does not justify any

simplification and equations (7) through (10) must be used unaltered.

C. Finite Difference Form of the Equations

Equation (1l1) becomes, in finite difference form,
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Here k 1is the point location in the x-~direction, £ in the y-direction,

and m in z-direction. The time plane is n and the time and space
increments are At and Ax. The other equations can be similarly represented.
Solid boundaries may be represented by a '"reflection point" one in-
crement inside the wall having properties identical to those at one
increment outside, except that the velocities normal to the wall are in
opposite directions.
These equations, as written above, are numerically unstable. They
can be stabilized by the addition of diffusion terms, as is done in many

numerical field-plotting methods.

IV. COMPARISON WITH ANALYTICAL RESULTS

To evaluate the numerical method presented above, several test pro-
blems were programmed and computed on the IBM 7040 computer at the Oklahoma

State University Computer Center.



A set of simple plane wave/wall interaction problems were run, and
the results were physically perceptive. As a more rigid test, a two=-
dimensional problem was computed involving an "N-wave' impinging on the
area between the ground and a finite-length overhanging canopy. This
corresponded exactly to the problem solved by an analytical method in
the work performed by the project director with Andrews Associates under
a recent N.A.S.A. contract. This was described in detail in N.A.S.A.
Contractor Report 66169.

The results of the two methods were nearly identical except that
the numerical method tended to smooth the sharpest '"spikes'" on the
pressure-time curves. This smoothing is the inevitable effect of the
addition of the diffusion terms for numerical stability, and of using
a finite number of computation net points. However, the effect was not
great enough to cause serious errors. Since the analytical method rests
on firm physical and mathematical foundations, the agreement was accepted
as establishing a good level of confidence in the results of the numerical

technique.

V. APPLICATION TO PLANE-WAVE ATMOSPHERIC DISTURBANCES

The weak-wave numerical method is now being applied to a plane wave
moving through an atmosphere which is uniform except for a thin, horizontal
gust which is exerted for a short period of time. The extent of the
disturbance on the moving wave will be computed. When this is computed,
the uniform atmosphere will be replaced by one having a linear variation
of acoustic velocity with altitude, and horizontal and vertical gusts

will be imposed.



Problems planned, in order to increasing complexity, are:

(a) plane wave with local plane temperature anamoly.

(b) plane wave with local (circular) gusts and temperature anamolies.
This becomes an axi-symmetric problem for a uniform atmosphere
and a three-dimension problem for the variable temperature

atmosphere.
| VI. THREE-DIMENSIONAL STRONG WAVE METHOD

Finite difference forms of Equations (1) through (5) have been written
in cylindrical coordinates, including the artifical diffusion terms. These
were given an initial evaluation by application to a cone-cylinder at a
5° angle of attack flying at a Mach number of 3.0. The computations were
performed at 400 points for each of ten radial planes passing through the
axis of symmetry. The resulting flow fields are being compared with those
from analytical methods (Kopal's and Sims' tables). When the development
of the computer code is complete, it will be possible to apply it to the
near-field computations of a non-symmetrical body, such as half-cone.

The three-dimensional program is quite lengthy and time-consuming,
due to the large number of points required to describe the field. The
7040 computer can be utilized only by a method of constant shifting of
stored information between the computer and magnetic tape units. This is
very slow and inefficient use of a computer. It may be necessary to appeal
to the sponsoring agency to provide a large capacity computer for truly

meaningful production runs.



